当前位置:首页 > 学习资源 > 分数的竖式计算步骤是什么?

分数的竖式计算步骤是什么?

shiwaishuzidu2026年01月03日 20:58:23学习资源30

分数的竖式计算是数学运算中处理分数加减乘除的重要方法,尤其当分数的分子或分母较大,或需要精确计算时,竖式能清晰展示运算步骤,避免出错,以下将从分数加减乘除四种基本运算出发,结合具体案例和表格,详细说明分数竖式的书写规则与计算逻辑。

分数加法的竖式计算

分数加法的核心是“通分”,即找到所有分母的最小公倍数(LCM),将异分母分数转化为同分母分数,再分子相加,竖式书写时,需将通分后的分子对齐,分母保持一致。

案例1:计算 (\frac{3}{4} + \frac{2}{5})

  1. 通分:分母4和5的最小公倍数是20,将分数转化为 (\frac{3 \times 5}{4 \times 5} = \frac{15}{20}) 和 (\frac{2 \times 4}{5 \times 4} = \frac{8}{20})。
  2. 竖式对齐
    [ \begin{array}{r} \frac{15}{20} \

    \frac{8}{20} \ \hline \frac{23}{20} \end{array} ]

  3. 化简:结果 (\frac{23}{20}) 可化为带分数 (1\frac{3}{20})。

案例2:带分数加法 (2\frac{1}{3} + 1\frac{1}{6})

  1. 拆分整数与分数部分:整数部分 (2 + 1 = 3),分数部分 (\frac{1}{3} + \frac{1}{6})。
  2. 通分计算分数:(\frac{1}{3} = \frac{2}{6}),竖式如下:
    [ \begin{array}{r} \frac{2}{6} \

    \frac{1}{6} \ \hline \frac{3}{6} = \frac{1}{2} \end{array} ]

  3. 合并结果:整数3与分数 (\frac{1}{2}) 结合,最终得 (3\frac{1}{2})。

分数减法的竖式计算

分数减法与加法类似,需先通分,再将分子相减(注意被减数分子需足够大,否则需借位)。

案例3:计算 (\frac{5}{6} - \frac{3}{8})

  1. 通分:分母6和8的最小公倍数是24,转化为 (\frac{20}{24}) 和 (\frac{9}{24})。
  2. 竖式计算
    [ \begin{array}{r} \frac{20}{24} \
    • \frac{9}{24} \ \hline \frac{11}{24} \end{array} ]
      结果 (\frac{11}{24}) 已为最简分数。

案例4:被减数分子不足时的借位 (3\frac{1}{4} - 1\frac{2}{3})

  1. 拆分整数与分数:整数 (3 - 1 = 2),分数 (\frac{1}{4} - \frac{2}{3})。
  2. 通分并借位:(\frac{1}{4} = \frac{3}{12}),(\frac{2}{3} = \frac{8}{12}),因 (3 < 8),需从整数部分借1,即 (2) 变为 (1),分数部分变为 (\frac{3}{12} + \frac{12}{12} = \frac{15}{12})。
  3. 竖式计算
    [ \begin{array}{r} \frac{15}{12} \

    \frac{8}{12} \ \hline \frac{7}{12} \end{array} ]

  4. 合并结果:整数1与分数 (\frac{7}{12}) 结合,最终得 (1\frac{7}{12})。

分数乘法的竖式计算

分数乘法无需通分,直接分子相乘、分母相乘,最后化简,竖式可分步展示分子与分母的乘积。

案例5:计算 (\frac{2}{3} \times \frac{4}{5})

  1. 分子相乘:(2 \times 4 = 8)。
  2. 分母相乘:(3 \times 5 = 15)。
  3. 竖式呈现
    [ \begin{array}{r} \frac{2}{3} \ \times \frac{4}{5} \ \hline \frac{2 \times 4}{3 \times 5} = \frac{8}{15} \end{array} ]
    结果 (\frac{8}{15}) 已最简。

案例6:带分数乘法 (1\frac{1}{2} \times 2\frac{2}{3})

  1. 转化为假分数:(1\frac{1}{2} = \frac{3}{2}),(2\frac{2}{3} = \frac{8}{3})。
  2. 竖式计算
    [ \begin{array}{r} \frac{3}{2} \ \times \frac{8}{3} \ \hline \frac{3 \times 8}{2 \times 3} = \frac{24}{6} = 4 \end{array} ]
    结果化简为整数4。

分数除法的竖式计算

分数除法需转化为乘法,即“除以一个分数等于乘以它的倒数”,再按乘法规则计算。

案例7:计算 (\frac{3}{4} \div \frac{2}{5})

  1. 转化为乘法:(\frac{3}{4} \times \frac{5}{2})。
  2. 竖式计算
    [ \begin{array}{r} \frac{3}{4} \ \times \frac{5}{2} \ \hline \frac{3 \times 5}{4 \times 2} = \frac{15}{8} = 1\frac{7}{8} \end{array} ]

案例8:复杂除法 (4\frac{1}{2} \div \frac{3}{8})

  1. 转化为假分数:(4\frac{1}{2} = \frac{9}{2})。
  2. 转化为乘法:(\frac{9}{2} \times \frac{8}{3})。
  3. 竖式计算
    [ \begin{array}{r} \frac{9}{2} \ \times \frac{8}{3} \ \hline \frac{9 \times 8}{2 \times 3} = \frac{72}{6} = 12 \end{array} ]

分数竖式计算的注意事项

  1. 通分准确性:确保最小公倍数计算正确,可通过列举倍数或短除法验证。
  2. 符号处理:加减法中注意分子相减的符号,避免负数结果未处理。
  3. 化简习惯:结果分子分母若有公因数(如2、3等),需及时约分。
  4. 带分数转换:涉及带分数时,建议先转为假分数再计算,减少步骤错误。

以下通过表格总结四种运算的竖式核心步骤:

运算类型 核心步骤 关键注意事项
加法 通分→分子相加→分母不变 检查最小公倍数,结果是否需化简
减法 通分→分子相减→分母不变 被减数分子不足时借位,避免负数
乘法 分子乘分子→分母乘分母→化简 可先约分再计算,简化运算过程
除法 转化为乘法(乘以倒数)→按乘法计算 倒数分子分母位置勿颠倒

相关问答FAQs

问题1:分数加减法中,为什么必须先通分?
解答:分数的分母代表整体被平均分成的份数,不同分母意味着“份数标准”不同。(\frac{1}{2}) 是将1分成2份,(\frac{1}{3}) 是分成3份,直接相加无法直接合并份数,通分后统一分母,确保每份的大小相同(如 (\frac{1}{2} = \frac{3}{6}),(\frac{1}{3} = \frac{2}{6})),此时分子可直接相加,得到 (\frac{5}{6}),若不通分,计算结果将失去实际意义(如 (\frac{1}{2} + \frac{1}{3} \neq \frac{2}{5}))。

问题2:分数乘法中,为何可以先约分再计算?
解答:分数乘法的本质是“求几分之几”,分子与分母的乘积顺序不影响最终结果,根据分数的基本性质,分子分母同时乘以或除以同一个非零数,分数值不变,例如计算 (\frac{2}{3} \times \frac{3}{4}),可先约分:分子2与分母4同除以2得1,分子3与分母3同除以3得1,简化为 (\frac{1}{1} \times \frac{1}{1} = 1),若先计算乘积得 (\frac{6}{12}),再约分也为1,但先约分能减少大数运算,提高效率和准确性。

版权声明:本文由 数字独教育 发布,如需转载请注明出处。

本文链接:https://shuzidu.com/xuexiziyuan/43132.html

分享给朋友:

“分数的竖式计算步骤是什么?” 的相关文章

2026年高考改革对复读生有何影响?

2026年高考改革对复读生有何影响?

2026年高考改革将深度重塑复读生态,这场涉及考试模式、录取规则与政策准入的系统性变革,正在倒逼复读群体进行战略转型。最新数据显示,全国已有90%省份实施"3+1+2"新高考模式,叠加公立校禁招复读生等政策,形成多维度的...

关于安全的手抄报

关于安全的手抄报

交通安全 场景 注意事项 步行时 走人行道,过马路走斑马线,看红绿灯,不与机动车抢行,不在马路上追逐打闹。 骑行时 戴头盔,遵守交通规则,不逆行,不闯红灯,不骑车载人(符合规定情况除外)。...

蹲踞式起跑教案

蹲踞式起跑教案

教学目标 知识与技能目标 学生能够准确阐述蹲踞式起跑的动作原理和要领,包括各环节的动作顺序、身体姿势及发力方式。 熟练掌握蹲踞式起跑技术,在起跑练习中,做到起跑反应迅速、动作规范、蹬地有力,能快速获得初速度,为后续加速跑奠定良好基...

教案检查归纳

教案检查归纳

教案检查背景与目的 为保障教学质量,提升教学效果,学校定期组织教案检查,本次检查旨在全面了解教师教学准备情况,规范教学流程,促进教师专业成长,确保教学活动有序、高效开展,为学生提供优质教育服务。 检查范围与参与人员 涵盖全校各学科任课...

钢铁是怎样炼成的读后感200字

钢铁是怎样炼成的读后感200字

钢铁是怎样炼成的》这部小说通过保尔·柯察金的成长历程,展现了一个普通人在革命与逆境中锤炼成钢的艰辛过程,以下是对这本书的读后感: 人物塑造与成长 人物 性格特点 成长经历 保尔·柯察金 顽强、执着、勇...

优秀作文

优秀作文

引言 在生活的广袤画卷中,总有一些瞬间如同璀璨星辰,照亮我们前行的道路,给予我们深刻的启示与无尽的力量,这些看似平凡的时刻,却蕴含着不平凡的智慧与情感,如同涓涓细流,润泽着我们的心田,让我们在成长的旅途中不断蜕变,逐渐领悟生命的真谛。...