分数加减法计算题50道怎么算才快准?
,掌握其计算方法对后续学习至关重要,以下是50道分数加减法计算题,涵盖同分母、异分母、带分数及混合运算等多种类型,通过系统练习可逐步提升计算能力。
同分母分数加减法(1-10题)
同分母分数相加减,分母不变,分子直接相加减。
- $\frac{3}{7} + \frac{2}{7} = \frac{5}{7}$
- $\frac{5}{9} - \frac{2}{9} = \frac{3}{9} = \frac{1}{3}$
- $\frac{11}{12} + \frac{5}{12} = \frac{16}{12} = \frac{4}{3}$
- $\frac{7}{15} - \frac{4}{15} = \frac{3}{15} = \frac{1}{5}$
- $\frac{8}{13} + \frac{6}{13} = \frac{14}{13}$
- $\frac{9}{16} - \frac{5}{16} = \frac{4}{16} = \frac{1}{4}$
- $\frac{1}{2} + \frac{1}{2} = 1$
- $\frac{3}{10} - \frac{1}{10} = \frac{2}{10} = \frac{1}{5}$
- $\frac{7}{20} + \frac{9}{20} = \frac{16}{20} = \frac{4}{5}$
- $\frac{5}{8} - \frac{3}{8} = \frac{2}{8} = \frac{1}{4}$
异分母分数加减法(11-30题)
异分母分数需先通分(化为同分母),再按同分母方法计算。
11. $\frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6} = \frac{5}{6}$
12. $\frac{2}{5} - \frac{1}{4} = \frac{8}{20} - \frac{5}{20} = \frac{3}{20}$
13. $\frac{3}{4} + \frac{2}{7} = \frac{21}{28} + \frac{8}{28} = \frac{29}{28}$
14. $\frac{5}{6} - \frac{1}{3} = \frac{5}{6} - \frac{2}{6} = \frac{3}{6} = \frac{1}{2}$
15. $\frac{1}{5} + \frac{3}{10} = \frac{2}{10} + \frac{3}{10} = \frac{5}{10} = \frac{1}{2}$
16. $\frac{7}{8} - \frac{1}{6} = \frac{21}{24} - \frac{4}{24} = \frac{17}{24}$
17. $\frac{2}{9} + \frac{5}{12} = \frac{8}{36} + \frac{15}{36} = \frac{23}{36}$
18. $\frac{3}{10} - \frac{1}{15} = \frac{9}{30} - \frac{2}{30} = \frac{7}{30}$
19. $\frac{4}{7} + \frac{5}{14} = \frac{8}{14} + \frac{5}{14} = \frac{13}{14}$
20. $\frac{5}{12} - \frac{1}{4} = \frac{5}{12} - \frac{3}{12} = \frac{2}{12} = \frac{1}{6}$
21. $\frac{1}{3} + \frac{2}{5} = \frac{5}{15} + \frac{6}{15} = \frac{11}{15}$
22. $\frac{7}{9} - \frac{2}{3} = \frac{7}{9} - \frac{6}{9} = \frac{1}{9}$
23. $\frac{3}{8} + \frac{1}{6} = \frac{9}{24} + \frac{4}{24} = \frac{13}{24}$
24. $\frac{5}{11} - \frac{3}{22} = \frac{10}{22} - \frac{3}{22} = \frac{7}{22}$
25. $\frac{2}{15} + \frac{3}{10} = \frac{4}{30} + \frac{9}{30} = \frac{13}{30}$
26. $\frac{4}{5} - \frac{7}{15} = \frac{12}{15} - \frac{7}{15} = \frac{5}{15} = \frac{1}{3}$
27. $\frac{1}{4} + \frac{3}{8} = \frac{2}{8} + \frac{3}{8} = \frac{5}{8}$
28. $\frac{9}{10} - \frac{2}{5} = \frac{9}{10} - \frac{4}{10} = \frac{5}{10} = \frac{1}{2}$
29. $\frac{5}{18} + \frac{7}{12} = \frac{10}{36} + \frac{21}{36} = \frac{31}{36}$
30. $\frac{11}{12} - \frac{5}{6} = \frac{11}{12} - \frac{10}{12} = \frac{1}{12}$
带分数加减法(31-45题)
带分数加减需整数部分与分数部分分别计算,结果需化为最简形式(若分数部分为假分数,需化为带分数)。
31. $2\frac{1}{3} + 1\frac{1}{3} = 3\frac{2}{3}$
32. $3\frac{2}{5} - 1\frac{1}{5} = 2\frac{1}{5}$
33. $4\frac{3}{4} + 2\frac{1}{2} = 4\frac{3}{4} + 2\frac{2}{4} = 6\frac{5}{4} = 7\frac{1}{4}$
34. $5\frac{1}{6} - 2\frac{1}{3} = 5\frac{1}{6} - 2\frac{2}{6} = 2\frac{5}{6}$
35. $1\frac{2}{7} + 3\frac{3}{7} = 4\frac{5}{7}$
36. $6\frac{3}{8} - 4\frac{5}{8} = 5\frac{11}{8} - 4\frac{5}{8} = 1\frac{6}{8} = 1\frac{3}{4}$
37. $3\frac{1}{2} + 2\frac{1}{3} = 3\frac{3}{6} + 2\frac{2}{6} = 5\frac{5}{6}$
38. $4\frac{2}{3} - 1\frac{1}{4} = 4\frac{8}{12} - 1\frac{3}{12} = 3\frac{5}{12}$
39. $2\frac{5}{9} + 1\frac{7}{9} = 3\frac{12}{9} = 4\frac{3}{9} = 4\frac{1}{3}$
40. $7\frac{1}{10} - 3\frac{3}{5} = 7\frac{1}{10} - 3\frac{6}{10} = 6\frac{11}{10} - 3\frac{6}{10} = 3\frac{5}{10} = 3\frac{1}{2}$
41. $1\frac{3}{4} + 2\frac{2}{3} = 1\frac{9}{12} + 2\frac{8}{12} = 3\frac{17}{12} = 4\frac{5}{12}$
42. $5\frac{1}{6} - 2\frac{5}{12} = 5\frac{2}{12} - 2\frac{5}{12} = 4\frac{14}{12} - 2\frac{5}{12} = 2\frac{9}{12} = 2\frac{3}{4}$
43. $3\frac{7}{8} + 1\frac{1}{4} = 3\frac{7}{8} + 1\frac{2}{8} = 4\frac{9}{8} = 5\frac{1}{8}$
44. $6\frac{2}{3} - 3\frac{1}{2} = 6\frac{4}{6} - 3\frac{3}{6} = 3\frac{1}{6}$
45. $2\frac{1}{5} + 3\frac{3}{10} = 2\frac{2}{10} + 3\frac{3}{10} = 5\frac{5}{10} = 5\frac{1}{2}$
分数加减混合运算(46-50题)
混合运算需按从左到右顺序计算,可先统一分数形式(假分数或带分数),再逐步计算。
46. $\frac{1}{2} + \frac{1}{3} - \frac{1}{6} = \frac{3}{6} + \frac{2}{6} - \frac{1}{6} = \frac{4}{6} = \frac{2}{3}$
47. $2\frac{1}{4} + 1\frac{1}{2} - \frac{3}{4} = 2\frac{1}{4} + 1\frac{2}{4} - \frac{3}{4} = 3\frac{3}{4} - \frac{3}{4} = 3$
48. $\frac{5}{6} - \frac{1}{3} + \frac{2}{9} = \frac{5}{6} - \frac{2}{6} + \frac{2}{9} = \frac{3}{6} + \frac{2}{9} = \frac{1}{2} + \frac{2}{9} = \frac{9}{18} + \frac{4}{18} = \frac{13}{18}$
49. $3\frac{2}{5} - 1\frac{3}{10} + \frac{1}{2} = 3\frac{4}{10} - 1\frac{3}{10} + \frac{5}{10} = 2\frac{1}{10} + \frac{5}{10} = 2\frac{6}{10} = 2\frac{3}{5}$
50. $1\frac{1}{2} + 2\frac{1}{3} - 1\frac{5}{6} = 1\frac{3}{6} + 2\frac{2}{6} - 1\frac{5}{6} = 3\frac{5}{6} - 1\frac{5}{6} = 2$
练习建议
- 分阶段练习:先掌握同分母,再攻克异分母,最后练习带分数和混合运算,逐步提升难度。
- 注重通分:异分母分数通分时,优先求最小公倍数以简化计算;若最小公倍数难求,可用分母乘积作公分母。
- 结果化简:计算后需检查分子分母是否有公因数,确保结果为最简分数(如$\frac{3}{9}$化为$\frac{1}{3}$)。
- 验算习惯:可通过逆向运算(如加法用减法验算)验证结果正确性。
相关问答FAQs
Q1:异分母分数加减法中,如何快速找到最小公倍数?
A1:若分母是倍数关系(如4和8),则较大数为最小公倍数;若分母互质(如3和5),则乘积为最小公倍数;若分母有公因数(如6和9),可用短除法分解质因数,取各质因数最高次幂相乘($6=2×3$,$9=3^2$,最小公倍数$=2×3^2=18$)。
Q2:带分数加减时,若分数部分不够减怎么办?
A2:需从整数部分“借1”,将“1”化为与减数分母相同的假分数加入原分数部分,例如计算$5\frac{1}{4} - 2\frac{3}{4}$,从5借1得$4\frac{5}{4}$,再减$2\frac{3}{4}$,结果为$1\frac{2}{4}=1\frac{1}{2}$。
版权声明:本文由 数字独教育 发布,如需转载请注明出处。


冀ICP备2021017634号-12
冀公网安备13062802000114号