50道假分数化带分数怎么算?新手必看解题步骤
将假分数化成带分数是分数运算中的基础技能,假分数是指分子大于或等于分母的分数,而带分数由整数部分和真分数部分组成,化过程的核心是通过除法确定整数部分,余数作为新分子,分母保持不变,以下详细说明50道假分数化成带分数的练习方法、步骤解析及示例,帮助掌握这一技能。
化步骤详解
假分数化带分数的步骤可概括为“三步法”:
- 除法求整数:用分子除以分母,商为带分数的整数部分;
- 余数定分子:除法的余数作为带分数分子的新分子;
- 分母不变:原分母作为带分数的分母。
公式表示为:(\frac{a}{b} = q \frac{r}{b})((a \div b = q)余(r),0 \leq r < b))。
50道练习题及解析(按难度递进排列)
以下表格列出50道假分数化带分数的题目及答案,部分题目附关键步骤解析:
| 序号 | 假分数 | 化步骤解析 | 带分数结果 |
|---|---|---|---|
| 1 | (\frac{5}{3}) | (5 \div 3 = 1)余(2) | (1\frac{2}{3}) |
| 2 | (\frac{7}{2}) | (7 \div 2 = 3)余(1) | (3\frac{1}{2}) |
| 3 | (\frac{10}{4}) | (10 \div 4 = 2)余(2),约分(\frac{2}{4} = \frac{1}{2}) | (2\frac{1}{2}) |
| 4 | (\frac{13}{5}) | (13 \div 5 = 2)余(3) | (2\frac{3}{5}) |
| 5 | (\frac{9}{9}) | (9 \div 9 = 1)余(0) | (1)(整数) |
| 6 | (\frac{15}{6}) | (15 \div 6 = 2)余(3),约分(\frac{3}{6} = \frac{1}{2}) | (2\frac{1}{2}) |
| 7 | (\frac{8}{3}) | (8 \div 3 = 2)余(2) | (2\frac{2}{3}) |
| 8 | (\frac{17}{8}) | (17 \div 8 = 2)余(1) | (2\frac{1}{8}) |
| 9 | (\frac{23}{7}) | (23 \div 7 = 3)余(2) | (3\frac{2}{7}) |
| 10 | (\frac{12}{5}) | (12 \div 5 = 2)余(2) | (2\frac{2}{5}) |
| 11 | (\frac{19}{4}) | (19 \div 4 = 4)余(3) | (4\frac{3}{4}) |
| 12 | (\frac{25}{6}) | (25 \div 6 = 4)余(1) | (4\frac{1}{6}) |
| 13 | (\frac{14}{3}) | (14 \div 3 = 4)余(2) | (4\frac{2}{3}) |
| 14 | (\frac{20}{7}) | (20 \div 7 = 2)余(6) | (2\frac{6}{7}) |
| 15 | (\frac{11}{2}) | (11 \div 2 = 5)余(1) | (5\frac{1}{2}) |
| 16 | (\frac{27}{9}) | (27 \div 9 = 3)余(0) | (3) |
| 17 | (\frac{18}{5}) | (18 \div 5 = 3)余(3) | (3\frac{3}{5}) |
| 18 | (\frac{22}{8}) | (22 \div 8 = 2)余(6),约分(\frac{6}{8} = \frac{3}{4}) | (2\frac{3}{4}) |
| 19 | (\frac{16}{3}) | (16 \div 3 = 5)余(1) | (5\frac{1}{3}) |
| 20 | (\frac{29}{10}) | (29 \div 10 = 2)余(9) | (2\frac{9}{10}) |
| 21 | (\frac{31}{7}) | (31 \div 7 = 4)余(3) | (4\frac{3}{7}) |
| 22 | (\frac{24}{11}) | (24 \div 11 = 2)余(2) | (2\frac{2}{11}) |
| 23 | (\frac{35}{12}) | (35 \div 12 = 2)余(11) | (2\frac{11}{12}) |
| 24 | (\frac{13}{6}) | (13 \div 6 = 2)余(1) | (2\frac{1}{6}) |
| 25 | (\frac{21}{4}) | (21 \div 4 = 5)余(1) | (5\frac{1}{4}) |
| 26 | (\frac{37}{9}) | (37 \div 9 = 4)余(1) | (4\frac{1}{9}) |
| 27 | (\frac{19}{3}) | (19 \div 3 = 6)余(1) | (6\frac{1}{3}) |
| 28 | (\frac{26}{5}) | (26 \div 5 = 5)余(1) | (5\frac{1}{5}) |
| 29 | (\frac{32}{7}) | (32 \div 7 = 4)余(4) | (4\frac{4}{7}) |
| 30 | (\frac{15}{4}) | (15 \div 4 = 3)余(3) | (3\frac{3}{4}) |
| 31 | (\frac{28}{6}) | (28 \div 6 = 4)余(4),约分(\frac{4}{6} = \frac{2}{3}) | (4\frac{2}{3}) |
| 32 | (\frac{41}{10}) | (41 \div 10 = 4)余(1) | (4\frac{1}{10}) |
| 33 | (\frac{33}{8}) | (33 \div 8 = 4)余(1) | (4\frac{1}{8}) |
| 34 | (\frac{17}{5}) | (17 \div 5 = 3)余(2) | (3\frac{2}{5}) |
| 35 | (\frac{23}{6}) | (23 \div 6 = 3)余(5) | (3\frac{5}{6}) |
| 36 | (\frac{39}{13}) | (39 \div 13 = 3)余(0) | (3) |
| 37 | (\frac{25}{8}) | (25 \div 8 = 3)余(1) | (3\frac{1}{8}) |
| 38 | (\frac{18}{7}) | (18 \div 7 = 2)余(4) | (2\frac{4}{7}) |
| 39 | (\frac{30}{11}) | (30 \div 11 = 2)余(8) | (2\frac{8}{11}) |
| 40 | (\frac{14}{9}) | (14 \div 9 = 1)余(5) | (1\frac{5}{9}) |
| 41 | (\frac{22}{5}) | (22 \div 5 = 4)余(2) | (4\frac{2}{5}) |
| 42 | (\frac{34}{12}) | (34 \div 12 = 2)余(10),约分(\frac{10}{12} = \frac{5}{6}) | (2\frac{5}{6}) |
| 43 | (\frac{27}{10}) | (27 \div 10 = 2)余(7) | (2\frac{7}{10}) |
| 44 | (\frac{19}{7}) | (19 \div 7 = 2)余(5) | (2\frac{5}{7}) |
| 45 | (\frac{31}{11}) | (31 \div 11 = 2)余(9) | (2\frac{9}{11}) |
| 46 | (\frac{16}{5}) | (16 \div 5 = 3)余(1) | (3\frac{1}{5}) |
| 47 | (\frac{24}{9}) | (24 \div 9 = 2)余(6),约分(\frac{6}{9} = \frac{2}{3}) | (2\frac{2}{3}) |
| 48 | (\frac{35}{11}) | (35 \div 11 = 3)余(2) | (3\frac{2}{11}) |
| 49 | (\frac{28}{7}) | (28 \div 7 = 4)余(0) | (4) |
| 50 | (\frac{42}{15}) | (42 \div 15 = 2)余(12),约分(\frac{12}{15} = \frac{4}{5}) | (2\frac{4}{5}) |
注意事项
- 约分处理:若余数与分母有公因数(如第3题(\frac{10}{4})),需将结果化成最简分数;
- 余数范围:余数必须小于分母,否则说明除法计算错误;
- 整数形式:当余数为0时(如第5题(\frac{9}{9})),结果为整数,无需写分母。
相关问答FAQs
问题1:假分数化带分数时,为什么余数必须小于分母?
解答:根据除法定义,余数必须小于除数(即分母),若余数大于或等于分母,说明商还可以继续增加,\frac{10}{4})中,若商为1余6((6 > 4)),则实际商应为2余2((10 \div 4 = 2)余(2)),因此余数必须小于分母才能保证结果的正确性。
问题2:如何快速判断假分数能否直接化成整数?
解答:当分子是分母的整数倍时,假分数可直接化成整数,\frac{28}{7})中,(28 \div 7 = 4)余0,结果为整数4;而(\frac{27}{7})中,(27 \div 7 = 3)余6,无法化成整数,判断时只需看分子能否被分母整除,若能整除(余数为0),则为整数,否则为带分数。
版权声明:本文由 数字独教育 发布,如需转载请注明出处。


冀ICP备2021017634号-12
冀公网安备13062802000114号