当前位置:首页 > 学习资源 > 分数的值域怎么求?求值域的步骤有哪些?

分数的值域怎么求?求值域的步骤有哪些?

shiwaishuzidu2025年11月09日 19:05:23学习资源4

分数的值域是指函数中所有可能的输出值的集合,即因变量y的取值范围,求分数函数的值域是数学中的常见问题,尤其是对于形如 ( f(x) = \frac{P(x)}{Q(x)} ) 的有理函数,( P(x) ) 和 ( Q(x) ) 是多项式,以下将系统介绍求分数值域的常用方法,并结合具体实例说明。

直接法(适用于简单分式)

对于最简单的分式函数,如 ( f(x) = \frac{c}{x} )(( c ) 为常数),可通过函数性质直接判断值域。

  • ( f(x) = \frac{1}{x} ) 的值域为 ( { y \mid y \neq 0 } )。
  • ( f(x) = \frac{2}{x-1} ) 的值域为 ( { y \mid y \neq 0 } ),因为分母不为零时,分子为非零常数。

步骤

  1. 确定分母的定义域(分母 ≠ 0)。
  2. 观察分子是否为常数,若为常数,则值域为 ( { y \mid y \neq 0 } )。

反函数法(适用于可逆分式)

通过求反函数的定义域来确定原函数的值域,适用于分子分母均为一次多项式的分式函数。
步骤

  1. 设 ( y = \frac{ax + b}{cx + d} )(( c \neq 0 ))。
  2. 解关于 ( x ) 的方程:( y(cx + d) = ax + b ),整理得 ( (cy - a)x = b - dy )。
  3. 若 ( cy - a \neq 0 ),则 ( x = \frac{b - dy}{cy - a} )。
  4. 反函数的定义域要求分母 ( cy - a \neq 0 ),即 ( y \neq \frac{a}{c} ),因此原函数的值域为 ( { y \mid y \neq \frac{a}{c} } )。

示例
求 ( f(x) = \frac{2x + 1}{3x - 2} ) 的值域。
解:设 ( y = \frac{2x + 1}{3x - 2} ),解得 ( x = \frac{2y + 1}{3y - 2} )。
反函数定义域要求 ( 3y - 2 \neq 0 ),即 ( y \neq \frac{2}{3} ),故值域为 ( { y \mid y \neq \frac{2}{3} } )。

判别式法(适用于二次分式)

当分子或分母为二次多项式时,可通过将函数转化为关于 ( x ) 的二次方程,利用判别式非负求值域。
步骤

  1. 设 ( y = \frac{ax^2 + bx + c}{dx^2 + ex + f} )(( d ) 和 ( a ) 不同时为零)。
  2. 整理为 ( (ay - d)x^2 + (by - e)x + (cy - f) = 0 )。
  3. 若 ( ay - d \neq 0 ),则判别式 ( \Delta \geq 0 ),解不等式得 ( y ) 的范围。
  4. 若 ( ay - d = 0 ),需单独讨论方程是否有解。

示例
求 ( f(x) = \frac{x^2 + 2x + 3}{x^2 + 1} ) 的值域。
解:设 ( y = \frac{x^2 + 2x + 3}{x^2 + 1} ),整理得 ( (y - 1)x^2 - 2x + (y - 3) = 0 )。
当 ( y \neq 1 ) 时,判别式 ( \Delta = (-2)^2 - 4(y - 1)(y - 3) \geq 0 ),即 ( 4 - 4(y^2 - 4y + 3) \geq 0 ),化简得 ( y^2 - 4y + 2 \leq 0 )。
解不等式得 ( 2 - \sqrt{2} \leq y \leq 2 + \sqrt{2} )。
当 ( y = 1 ) 时,方程为 ( -2x - 2 = 0 ),有解 ( x = -1 ),故 ( y = 1 ) 在值域内。
综上,值域为 ( [2 - \sqrt{2}, 2 + \sqrt{2}] )。

分离常数法(适用于假分式)

将假分式(分子次数 ≥ 分母次数)化为整式与真分式之和,简化问题。
步骤

  1. 对 ( f(x) = \frac{P(x)}{Q(x)} ) 进行多项式除法,得到 ( f(x) = g(x) + \frac{R(x)}{Q(x)} ),( \deg(R) < \deg(Q) )。
  2. 求 ( \frac{R(x)}{Q(x)} ) 的值域,再与 ( g(x) ) 的值域结合。

示例
求 ( f(x) = \frac{x^2 + 3x + 2}{x + 1} ) 的值域。
解:多项式除法得 ( f(x) = x + 2 + \frac{0}{x + 1} = x + 2 ),但需注意 ( x \neq -1 )。
当 ( x \neq -1 ) 时,( f(x) \neq 1 ),故值域为 ( { y \mid y \neq 1 } )。

单调性法(适用于可导分式)

通过求导判断函数的单调性,进而确定值域。
步骤

  1. 求导数 ( f'(x) ),确定单调区间。
  2. 结合定义域和极限(如 ( x \to \infty ) 时的趋势),确定值域。

示例
求 ( f(x) = \frac{x}{x^2 + 1} ) 的值域。
解:求导得 ( f'(x) = \frac{1 - x^2}{(x^2 + 1)^2} )。
令 ( f'(x) = 0 ),得 ( x = \pm 1 )。

  • 当 ( x \in (-\infty, -1) ) 时,( f'(x) < 0 ),函数单调递减。
  • 当 ( x \in (-1, 1) ) 时,( f'(x) > 0 ),函数单调递增。
  • 当 ( x \in (1, +\infty) ) 时,( f'(x) < 0 ),函数单调递减。
    计算极值:( f(-1) = -\frac{1}{2} ),( f(1) = \frac{1}{2} )。
    又 ( \lim_{x \to \pm\infty} f(x) = 0 ),故值域为 ( [-\frac{1}{2}, \frac{1}{2}] )。

利用基本不等式(适用于正变量分式)

对于 ( x > 0 ) 的分式,可利用均值不等式求值域。
示例
求 ( f(x) = \frac{x}{x^2 + 1} )(( x > 0 ))的值域。
解:由 ( x > 0 ),得 ( f(x) = \frac{1}{x + \frac{1}{x}} \leq \frac{1}{2} )(当 ( x = 1 ) 时取等)。
又 ( f(x) > 0 ),故值域为 ( (0, \frac{1}{2}] )。

方法总结与适用场景

方法 适用场景 关键步骤
直接法 分子为常数,分母为简单线性式 确定分母不为零,排除 ( y = 0 )
反函数法 分子分母均为一次多项式 解反函数,求定义域限制
判别式法 分子或分母为二次多项式 转化为二次方程,利用判别式非负
分离常数法 假分式(分子次数 ≥ 分母次数) 多项式除法,分离后求剩余分式的值域
单调性法 可导分式函数 求导,分析单调性和极值,结合极限
基本不等式法 正变量分式,且可凑出定值 利用均值不等式放缩,注意等号成立条件

相关问答FAQs

问题1:为什么判别式法中需要讨论 ( ay - d = 0 ) 的情况?
解答:在判别式法中,若 ( ay - d = 0 ),则二次项系数为零,方程退化为一次方程,此时需单独判断该一次方程是否有解,以确定 ( y = \frac{a}{d} ) 是否在值域内,若方程 ( (cy - f) = 0 ) 有解,则 ( y = \frac{f}{c} ) 属于值域;否则不属于。

问题2:如何判断分式函数在定义域端点处的极限?
解答:对于定义域为 ( x \to a^+ ) 或 ( x \to b^- ) 的分式函数,需计算左右极限。( f(x) = \frac{1}{x-1} ) 在 ( x \to 1^+ ) 时 ( f(x) \to +\infty ),在 ( x \to 1^- ) 时 ( f(x) \to -\infty ),因此值域为 ( (-\infty, 0) \cup (0, +\infty) ),极限的判断有助于确定值域的边界或渐近线。

版权声明:本文由 数字独教育 发布,如需转载请注明出处。

本文链接:https://shuzidu.com/xuexiziyuan/27572.html

分享给朋友:

“分数的值域怎么求?求值域的步骤有哪些?” 的相关文章

申请报告范文

申请报告范文

具体事项]的申请报告 申请背景 随着公司业务的不断拓展,[项目名称]的推进迫在眉睫,公司在[相关业务领域]面临着[具体现状描述,如市场竞争加剧、业务量增长迅速等]的情况,现有的[资源或条件]已难以满足项目开展的需求,为了确保项目的顺利进...

读后感300字

读后感300字

《读〈平凡的世界〉有感》 人物刻画 《平凡的世界》中众多人物形象鲜明,孙少平,他不甘于在农村度过平淡一生,怀揣梦想外出闯荡,即使面对艰苦的工作环境,依然坚持自我成长,那股对知识的渴望和对外面世界的向往令人动容,田晓霞,她善良、勇敢且富有...

我的自画像作文

我的自画像作文

外貌描绘 我站在镜子前,仔细端详着自己,我身材适中,不高不矮,体型匀称,仿佛是大自然精心雕琢的一个普通却独特的作品。 我的脸庞圆润,犹如一轮满月,泛着健康的红晕,弯弯的眉毛似两片柳叶,自然地舒展在眼睛上方,眉色不浓不淡,恰到好处,下面是...

一年级手抄报简单又好看

一年级手抄报简单又好看

手抄报设计思路 对于一年级小朋友来说,手抄报要简单且色彩鲜艳才能吸引眼球,先确定一个主题,我的家庭”或者“我爱动物”,然后围绕主题来布局内容。 版面规划 (一)划分区域 把纸张分成几个小块,比如上面三分之一可以用来写标题(标题字要大...

文明礼仪伴我行手抄报

文明礼仪伴我行手抄报

文明礼仪伴我行 校园文明礼仪 场合 具体礼仪 课堂 提前准备好学习用品,上课铃响后迅速安静入座;举手发言,起立回答问题,尊重老师;不随意打断老师讲课,认真聆听。 课间 轻声慢步,不追逐打闹;...

五一劳动节手抄报内容

五一劳动节手抄报内容

五一劳动节的由来 国际劳动节起源:1886年5月1日,美国芝加哥的工人举行大罢工,要求改善劳动条件,实行八小时工作制,这次罢工遭到血腥镇压,为纪念这次伟大的工人运动,1889年7月,恩格斯领导的第二国际在巴黎举行代表大会,决定把5月1...