分数解方程计算题50道怎么算?技巧步骤详解!
分数解方程计算题是数学学习中常见的练习类型,主要涉及通过分数的运算规则将方程化简为标准形式,再求解未知数的值,这类题目能够帮助学生巩固分数的加减乘除运算、等式性质以及移项合并同类项等知识点,以下是50道分数解方程计算题的详细内容,题目难度由浅入深,涵盖基础到进阶的不同层次,并附部分题目解析表格及常见问题解答。
分数解方程计算题(50道)
- (\frac{x}{2} + \frac{x}{3} = 10)
- (\frac{2x}{5} - \frac{x}{10} = 3)
- (\frac{x+1}{4} + \frac{x-1}{6} = 1)
- (\frac{3x}{4} - \frac{x}{2} = \frac{1}{4})
- (\frac{2x+1}{3} - \frac{x}{2} = \frac{1}{6})
- (\frac{x}{5} + \frac{x}{4} = \frac{9}{20})
- (\frac{3x}{2} - \frac{x}{3} = \frac{7}{6})
- (\frac{x-2}{3} + \frac{x+2}{5} = 2)
- (\frac{4x}{7} - \frac{x}{14} = \frac{1}{2})
- (\frac{2x-1}{4} + \frac{x}{3} = \frac{5}{12})
- (\frac{x}{6} + \frac{x}{3} = \frac{1}{2})
- (\frac{5x}{8} - \frac{x}{4} = \frac{3}{8})
- (\frac{x+3}{5} - \frac{x}{10} = \frac{1}{2})
- (\frac{3x}{5} + \frac{x}{10} = \frac{7}{10})
- (\frac{2x-1}{6} + \frac{x}{3} = \frac{1}{2})
- (\frac{x}{4} + \frac{x}{2} = \frac{3}{4})
- (\frac{4x}{9} - \frac{x}{3} = \frac{1}{9})
- (\frac{x-1}{2} + \frac{x+1}{3} = 2)
- (\frac{5x}{6} - \frac{x}{2} = \frac{1}{3})
- (\frac{2x+3}{7} - \frac{x}{14} = \frac{1}{2})
- (\frac{x}{3} + \frac{x}{6} = \frac{1}{2})
- (\frac{3x}{4} - \frac{x}{8} = \frac{5}{8})
- (\frac{x+2}{4} + \frac{x-2}{6} = 1)
- (\frac{7x}{10} - \frac{x}{5} = \frac{1}{2})
- (\frac{2x-1}{5} + \frac{x}{10} = \frac{3}{10})
- (\frac{x}{5} - \frac{x}{10} = \frac{1}{10})
- (\frac{4x}{3} - \frac{x}{2} = \frac{5}{6})
- (\frac{x-3}{7} + \frac{x}{14} = \frac{1}{2})
- (\frac{5x}{8} + \frac{x}{4} = \frac{7}{8})
- (\frac{3x-1}{4} + \frac{x}{2} = \frac{5}{4})
- (\frac{x}{6} + \frac{x}{4} = \frac{5}{12})
- (\frac{2x}{7} - \frac{x}{14} = \frac{1}{2})
- (\frac{x+1}{3} + \frac{x-1}{6} = \frac{1}{2})
- (\frac{6x}{5} - \frac{x}{10} = \frac{11}{10})
- (\frac{3x}{7} + \frac{x}{14} = \frac{1}{2})
- (\frac{x-2}{5} + \frac{x}{10} = \frac{3}{10})
- (\frac{4x}{9} + \frac{x}{3} = \frac{7}{9})
- (\frac{2x+1}{8} + \frac{x}{4} = \frac{5}{8})
- (\frac{x}{12} + \frac{x}{6} = \frac{1}{4})
- (\frac{5x}{6} - \frac{2x}{3} = \frac{1}{6})
- (\frac{x+4}{6} - \frac{x}{3} = \frac{1}{6})
- (\frac{3x}{10} - \frac{x}{5} = \frac{1}{10})
- (\frac{2x-3}{9} + \frac{x}{3} = \frac{2}{9})
- (\frac{x}{8} + \frac{x}{4} = \frac{3}{8})
- (\frac{7x}{12} - \frac{x}{4} = \frac{1}{3})
- (\frac{x-1}{4} + \frac{x+1}{6} = 1)
- (\frac{4x}{5} - \frac{x}{10} = \frac{7}{10})
- (\frac{3x-2}{6} + \frac{x}{3} = \frac{2}{3})
- (\frac{x}{15} + \frac{x}{5} = \frac{4}{15})
- (\frac{5x}{7} - \frac{3x}{14} = \frac{1}{2})
部分题目解析表格
题号 | 解方程步骤 | 答案 |
---|---|---|
1 | 通分:(\frac{3x+2x}{6} = 10) → (5x = 60) → (x = 12) | (x = 12) |
5 | 通分:(\frac{2(2x+1)-3x}{6} = \frac{1}{6}) → (4x+2-3x = 1) → (x = -1) | (x = -1) |
10 | 通分:(\frac{3(2x-1)+4x}{12} = \frac{5}{12}) → (6x-3+4x = 5) → (10x = 8) → (x = 0.8) | (x = \frac{4}{5}) |
20 | 通分:(\frac{2(2x+3)-x}{14} = \frac{1}{2}) → (4x+6-x = 7) → (3x = 1) → (x = \frac{1}{3}) | (x = \frac{1}{3}) |
30 | 通分:(\frac{3x-1+2x}{4} = \frac{5}{4}) → (5x-1 = 5) → (5x = 6) → (x = \frac{6}{5}) | (x = \frac{6}{5}) |
相关问答FAQs
Q1: 解分数方程时,如何确定最简公分母?
A1: 最简公分母是各分母的最小公倍数,分母为4和6时,最小公倍数是12,因此通分时分子分母同乘3(对于分母4)或2(对于分母6),若分母含字母,如(x)和(2x),最简公分母为(2x),确定最简公分母后,将方程所有项统一转化为同分母形式,再消去分母简化计算。
Q2: 分数方程解完后,如何验证答案的正确性?
A2: 将解得的未知数代入原方程左右两边,计算是否相等,对于方程(\frac{x}{2} + \frac{x}{3} = 10),解得(x=12)后,代入左边得(\frac{12}{2} + \frac{12}{3} = 6 + 4 = 10),与右边相等,验证正确,若代入后左右不等,可能是计算过程中通分或移项出错,需重新检查步骤。
版权声明:本文由 数字独教育 发布,如需转载请注明出处。